Hypercapnia-induced cerebral and ocular vasodilation is not altered by glibenclamide in humans.

نویسندگان

  • M Bayerle-Eder
  • M Wolzt
  • E Polska
  • H Langenberger
  • J Pleiner
  • D Teherani
  • G Rainer
  • K Polak
  • H G Eichler
  • L Schmetterer
چکیده

Carbon dioxide is an important regulator of vascular tone. Glibenclamide, an inhibitor of ATP-sensitive potassium channel (K(ATP)) activation, significantly blunts vasodilation in response to hypercapnic acidosis in animals. We investigated whether glibenclamide also alters the cerebral and ocular vasodilator response to hypercapnia in humans. Ten healthy male subjects were studied in a controlled, randomized, double-blind two-way crossover study under normoxic and hypercapnic conditions. Glibenclamide (5 mg po) or insulin (0.3 mU. kg(-1). min(-1) iv) were administered with glucose to achieve comparable plasma insulin levels. In control experiments, five healthy volunteers received glibenclamide (5 mg) or nicorandil (40 mg) or glibenclamide and nicorandil in a randomized, three-way crossover study. Mean blood flow velocity and resistive index in the middle cerebral artery (MCA) and in the ophthalmic artery (OA) were measured with Doppler sonography. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation. Forearm blood flow was measured with venous occlusion plethysmography. Hypercapnia increased ocular fundus pulsation amplitude by +18.2-22.3% (P < 0. 001) and mean flow velocity in the MCA by +27.4-33.3% (P < 0.001), but not in the OA (2.1-6.5%, P = 0.2). Forearm blood flow increased by 78.2% vs. baseline (P = 0.041) after nicorandil administration. Glibenclamide did not alter hypercapnia-induced changes in cerebral or ocular hemodynamics and did not affect systemic hemodynamics or forearm blood flow but significantly increased glucose utilization and blunted the nicorandil-induced vasodilation in the forearm. This suggests that hypercapnia-induced changes in the vascular beds under study are not mediated by activation of K(ATP) channels in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex.

BACKGROUND Carbon dioxide is an important vasodilator of cerebral blood vessels. Cerebral vasodilation mediated by adenosine triphosphate (ATP)-sensitive K+ channels has not been demonstrated in precapillary microvessel levels. Therefore, the current study was designed to examine whether ATP-sensitive K+ channels play a role in vasodilation induced by mild hypercapnia in precapillary arterioles...

متن کامل

Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans.

It is well known that changes in [Formula: see text] or[Formula: see text] strongly influence cerebral and ocular blood flow. However, the mediators of these changes have not yet been completely identified. There is evidence from animal studies that NO may play a role in hypercapnia-induced vasodilation and that NO synthase inhibition modulates the response to hyperoxia in the choroid. Hence we...

متن کامل

Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide.

BACKGROUND AND PURPOSE The purpose of these experiments was to examine mechanisms by which hypercapnia produces vasodilatation in brain. We examined the hypothesis that dilatation of cerebral arterioles during hypercapnia is dependent on activation of ATP-sensitive potassium channels and formation of nitric oxide. METHODS Diameters of cerebral arterioles were measured using a closed cranial w...

متن کامل

Role of Local Nerves and Prostaglandins in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in the Rabbit

The mechanisms underlying cerebral vasodilatation during hypercapnia are not fully understood. To examine the role of nerves and prostaglandins in the regulation of basal blood flow and in hypercapnia-induced vasodilatation in the cerebral blood vessels of rabbit.Cerebral blood flow was measured by laser Doppler flow-meter in 18 NZW rabbits anesthetized with sodium pentobarbital.  Tetrodetoxin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 278 6  شماره 

صفحات  -

تاریخ انتشار 2000